\qquad

Exam I, MTH 213, Spring 2012

Ayman Badawi

QUESTION 1. (i) 5 points Let $A=\{1,2,3,4\}$ and T be a partial order on A such that 3 is the maximum element of A under T and $1 \bigvee 2=4$. Then
$\mathrm{T}=$
(ii) 5 points Let $A=1,2,3$ and T be a partial order on $P(A)$ such that whenever $x, y \in P(A),(x, y) \in T$ iff $y \subseteq x$. Then
a) $\{1,2\} \bigwedge\{3\}=$
b) $\{2,3\} \bigvee\{2\}=$
c) $\phi \bigwedge A=$
(iii) 3 points Let $A=\{1,2,3\}$ and let T be a partial order on A. Given that T is also a function on A. Then $T=$
(iv) 6 points Let T be a partial order on N such that whenever $a, b \in N,(a, b) \in T$ iff $a=b k$ for some $k \in N$. Then
a) $12 \wedge 8=$
b) $6 \bigvee 9=$
c) Minimum element of N under T
d) Maximum element of N under T
(v) 6 points Let $A=\{0,1,1.5,2,3\}$. Define T on A such that $(a, b) \in T$ iff $a-b \in A$. Then
a) Find T.
b) Is T a partial order on A ? EXPLAIN. If yes find the minimum element of A under T.
c) If your answer is yes in b) Find $1.5 \bigwedge 1=\quad$ and $\quad 1.5 \bigvee 2=$
(vi) 5 points Let $A=\{1,2,4,6\}$. Construct an equivalence relation T on A such that A under T has exactly 3 distinct equivalent classes.

QUESTION 2. (i) $\mathbf{3}$ points Find $(3466)_{7}+(5201)_{7}=$
(ii) 3 points Convert $\left.\left(\begin{array}{lll}2 & 11 & 1\end{array}\right)_{12}\right)$ to base 10
(iii) 4 points Convert $(123)_{10}$ to base 5 .
(iv) 4 points Convert $(3 \underline{23} \underline{15})_{27}$ to base 3
(vi) 6 points Let $A=25 \times 90 \times 36$ and $B=24 \times 270 \times 12$.
a) Find $\operatorname{gcd}(A, B)$
b) Find $L C M[A, B]$

QUESTION 3. a) 4 points Prove that $\pi-3.14$ is an irrational number.
b) 4 points Prove that $\sqrt{60}+\sqrt{15}$ is an irrational number.
c)4 points Let A, B be sets. Prove that $A^{c} \cap B=B \backslash A$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam II, MTH 213, Spring 2012

Ayman Badawi

$($ Ten Questions, Each $=10$, Total of points $=100)$
QUESTION 1. Solve over Z
$2 x \equiv 4 \quad(\bmod 6), x \equiv 3 \quad(\bmod 4), 3 x \equiv 2(\bmod 5)$.

QUESTION 3. Find all integers that satisfy the following three properties : If each is divided by 8 , then the remainder is 7 . If each is divided by 4 , then the remainder is 3 . If each is divided by 36 , then the remainder is 35 .

QUESTION 5. (quick answers)
(i) How many edges does $K_{4,7}$ have?
(ii) How many edges does K_{70} have?
(iii) Let $n=21 \times 45 \times 56$. Then $\phi(n)$
(iv) As we explained in the class (counting Z), what will be the integer in the 27 place?
(v) What is the place of -410 ?

QUESTION 6. USE MATH INDUCTION to prove that $7 \mid\left(2^{6 n}-1\right)$ for each $n \geq 1$.

QUESTION 7. We know that $\operatorname{gcd}(45,37)=1$. Find TWO INTEGERS say F and W such that $1=45 F+37 W$

QUESTION 8. Show that $|R|=|(-4,4)|$ by constructing a bijection function from R ONTO ($-4,4$)

QUESTION 9. Construct the zero-divisor graph of Z_{18}, i. e $G\left(Z_{18}\right)$. Find $d(2,12), d(6,14)$. Find the diameter and the girth of the graph.

QUESTION 10. Given $a_{0}=-2, a_{1}=-6, a_{2}=28$ and $a_{n}=-6 a_{n-1}-12 a_{n-2}-8 a_{n-3}$ for each $n \geq 3$. Find a mathematical formula for a_{n}. Find the $7^{\text {th }}$ term of the sequence.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final Exam , MTH 213, Spring 2012

Ayman Badawi

QUESTION 1. (15 points) a) Find the largest negative integer that satisfies the three conditions: If it is divided by 13 , the remainder is 12 . If it is divided by 9 , the remainder is 8 . If it is divided by 3 , the remainder is 2 .
b) Find the smallest positive integer that satisfies the three conditions as in (a)

QUESTION 2. (15 points) Consider the following weighted graph:

1) Is the graph Euler? Explain
2) Is the graph Khaldoon-Hamilton graph? Explain
3) Is the graph Hamilton? Explain

Find d(A, H)

USE THE ALGORITHM WE STUDIED TO
FIND W-d(A, D)

QUESTION 3. (18 points) ((Write down T or F)

(i) If A is irrational, then A^{3} is irrational
(ii) If A is rational, then $4 \sqrt{A}+2$ is irrational.
(iii) If A is irrational, then \sqrt{A} needs not be irrational
(iv) If for some integer A, we have $A \equiv 7(\bmod 36)$, then $A \equiv 3(\bmod 4)$
(v) $(-\infty, 12] \cap Q$ is a countable set
(vi) There exists an integer K such that $K \equiv 5(\bmod 11)$ and $K \equiv 0(\bmod 34)$
(vii) If A, B are sets, then $(A \backslash B) \cap(B \backslash A)=\phi$
(viii) If $A \subset B$, then $A^{c} \subset B^{c}$
(ix) $D=\{(a, a-6) \mid a \in N\}$ is a binary relation on N.
(x) If T is a binary relation on a set A that is not reflexive, then $a \in A$ implies $(a, a) \notin T$
(xi) If a binary relation is antisymmetric, then it is not symmetric
(xii) If T is a total order on a set A and $a, b \in A(a \neq b)$, then $a \bigwedge b=a$ or $a \bigwedge b=b$

QUESTION 4. (8 points) Let $A=(-2,6)$ and $B=[-4,20]-\{8,11\}$. Show that $|A|=|B|$ by constructing a bijection function
$F: A \rightarrow B$. Write down the equation (s) of F .

QUESTION 5. (8 points) Let $A=\{a, b, c, d, e, f\}$ and T be a partial binary relation on A such that
$T=\{(a, a),(b, b),(c, c),(d, d),(e, e),(f, f),(a, d),(d, e),(a, e),(b, e),(b, c),(c, f),(b, f)\}$
a) Find $b \vee d$
b) Find $c \wedge e$
c) Find $a \vee b$
c)Find the Minimum and the Maximum of A under T if they exist

QUESTION 6. (8 points) Use math INDUCTION to Prove that $2^{n} \leq n!$ (where $n!$ is read " n factorial") for every $n \geq 4$

QUESTION 7. (12 points) a) Find $(174)_{8}+(635)_{8}$
b) Let $n=33 \times 77 \times 24$. Find $\Phi(n)$.
c) Convert 147 to base 5
e) Is there a graph with 5 vertices such that $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=\operatorname{deg}\left(v_{3}\right)=3$ and $\operatorname{deg}\left(v_{4}\right)=\operatorname{deg}\left(v_{5}\right)=6$? If yes, is it an Euler Graph?

QUESTION 8. (8 points) Construct the total graph of $T\left(Z_{9}\right)$

QUESTION 9. (8 points)Consider the graph below

Is the graph a planar? if yes, then EXPLAIN by REDRAWING the graph

Is the graph Hamilton? If yes Explain

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

